The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
Wireless ad hoc federated learning (WAFL) is a fully decentralized collaborative machine learning framework organized by opportunistically encountered mobile nodes. Compared to conventional federated learning, WAFL performs model training by weakly synchronizing the model parameters with others, and this shows great resilience to a poisoned model injected by an attacker. In this paper, we provide our theoretical analysis of the WAFL's resilience against model poisoning attacks, by formulating the force balance between the poisoned model and the legitimate model. According to our experiments, we confirmed that the nodes directly encountered the attacker has been somehow compromised to the poisoned model but other nodes have shown great resilience. More importantly, after the attacker has left the network, all the nodes have finally found stronger model parameters combined with the poisoned model. Most of the attack-experienced cases achieved higher accuracy than the no-attack-experienced cases.
translated by 谷歌翻译
近年来,地标复合物已成功地用于无定位和无公制的自主探索,并使用一组受GPS污染的环境中的一组感应有限的限制和沟通有限的机器人。为了确保快速而完整的探索,现有的作品对环境中地标的密度和分布做出了假设。这些假设可能过于限制,尤其是在可能被破坏或完全缺失的危险环境中。在本文中,我们首先提出了一个深入的加强学习框架,用于在具有稀疏地标的环境中,同时减少客户服务器交流的环境中的多代理合作探索。通过利用有关部分可观察性和信用分配的最新发展,我们的框架可以为多机器人系统有效地培训勘探政策。该政策从范围和分辨率有限的接近传感器基于近距离传感器的行动中获得个人奖励,该传感器与小组奖励相结合,以鼓励通过观察0-,1-维度和2维的简单来鼓励地标综合体的协作探索和建设。此外,我们采用三阶段的课程学习策略来通过逐渐增加随机障碍并破坏随机地标来减轻奖励稀疏性。模拟中的实验表明,我们的方法在不同环境之间具有稀疏地标的效率中的最先进的地标复杂探索方法。
translated by 谷歌翻译
联邦学习(FL)旨在以隐私的方式从大规模的分散设备中学习联合知识。但是,由于高质量标记的数据需要昂贵的人类智能和努力,因此带有错误标签的数据(称为嘈杂标签)无处不在,实际上不可避免地会导致性能退化。尽管提出了许多直接处理嘈杂标签的方法,但这些方法要么需要过多的计算开销,要么违反FL的隐私保护原则。为此,我们将重点放在FL上,目的是减轻嘈杂标签所产生的性能退化,同时保证数据隐私。具体而言,我们提出了一种局部自我调节方法,该方法通过隐式阻碍模型记忆噪声标签并明确地缩小了使用自我蒸馏之间的原始实例和增强实例之间的模型输出差异,从而有效地规范了局部训练过程。实验结果表明,我们提出的方法可以在三个基准数据集上的各种噪声水平中获得明显的抵抗力。此外,我们将方法与现有的最新方法集成在一起,并在实际数据集服装1M上实现卓越的性能。该代码可在https://github.com/sprinter1999/fedlsr上找到。
translated by 谷歌翻译
视觉问题回答(VQA)利用多模式数据引起了人们对现实生活应用的密集兴趣,例如家庭机器人和诊所诊断。然而,挑战之一是为不同的客户任务设计强大的学习。这项工作旨在弥合大规模培训数据的先决条件与客户数据共享的限制,主要是由于机密性。我们建议使用对比度损失(UNICON)进行单向分裂学习,以解决分布式数据孤岛的VQA任务培训。特别是,Unicon通过对比度学习对不同客户的整个数据分配进行了全球模型。从不同的本地任务中汇总的全球模型的学会表示。此外,我们设计了一个单向分裂学习框架,以实现更有效的知识共享。 VQA-V2数据集上使用五个最先进的VQA模型进行的综合实验证明了Unicon的功效,在VQA-V2的验证集中获得了49.89%的精度。这项工作是使用自我监督的分裂学习在数据机密性的约束下对VQA进行的首次研究。
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
多源域的适应性已深入研究。特定域固有的特征的分布变化会导致负转移降低模型的一般性,从而看不见任务。在联合学习(FL)中,为了利用来自不同领域的知识,共享学习的模型参数以训练全球模型。但是,FL的数据机密性阻碍了需要先验了解不同域数据的传统领域适应方法的有效性。为此,我们提出了一种称为联合知识一致性(FEDKA)的新联合领域生成方法。 FEDKA利用全局工作区中的特征分布匹配,以便全局模型可以在未知域数据的约束下学习域不变的客户端功能。设计了一种联合投票机制,以基于促进全球模型微调的客户的共识来生成目标域伪标签。我们进行了广泛的实验,包括消融研究,以评估拟议方法在图像分类任务和基于具有不同复杂性的模型体系结构的文本分类任务中的有效性。经验结果表明,FEDKA可以分别在数字五和办公室-Caltech10中实现8.8%和3.5%的绩效增长,并且在亚马逊审查中获得了0.7%的增长,并且培训数据极为有限。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
近年来,随着越来越复杂的网络钓鱼活动,网络钓鱼电子邮件吸引人们使用更合法的个人背景。为了解决这个问题,而不是基于传统的启发式算法,而是自适应检测系统,例如自然语言处理(NLP)的能力方法对于理解网络钓鱼文本表示至关重要。然而,围绕网络钓鱼数据收集的问题可能涵盖机密信息阻碍了模型学习的有效性。我们提出了一个称为联邦网络钓鱼碗(FEDPB)的去中心化的网络钓鱼电子邮件检测框架,该框架促进了与隐私的合作网络钓鱼检测。特别是,我们通过联合学习(FL)设计了一种知识共享机制。使用长短期内存(LSTM)进行网络钓鱼检测,该框架通过在客户端共享一个全局词嵌入矩阵来适应,每个客户端都使用非IID数据运行其本地模型。我们收集了最新的网络钓鱼样本,以使用不同的客户数量和数据分布来研究拟议方法的有效性。结果表明,FEDPB可以通过集中式网络钓鱼探测器获得竞争性能,而佛罗里达州的各种案例的预测准确性为83%。
translated by 谷歌翻译